Implementing & Optimizing Commercial Clinical Decision Support

Salim Saiyed, MD
Chief Medical Informatics Officer
CaroMont Health
NC HIMSS Annual Spring Conference
1. Describe the opportunities and challenges of commercial, Clinical Decision Support (CDS).

2. Describe a strategic approach to effectively implementing drug-dose CDS.

3. List specific ways to optimize drug-dose CDS.
Optimizing Drug-Dose Alerts Using Commercial Software Throughout an Integrated Healthcare System

Saiyed, SM. et al. JAMIA. 2017, 1-6
1. Describe the opportunities and challenges of commercial, Clinical Decision Support (CDS).

2. Describe a strategic approach to effectively implementing drug-dose CDS.

3. List specific ways to optimize drug-dose CDS.
CaroMont Health and Epic

- 1 tertiary care community hospital
- 2 ED locations
- 46+ Service sites
- 500 staff physicians
- 1,000 nurses
- **Annual Visits**
 - Admissions: 20,000+
 - ED Visits: 108,000+
 - Ambulatory/OP visits: 817,000+
- Epic 2015 Enterprise Version
- Hospital Live in 2015
- Clinics Live in 2014
What Are the Causes of Burnout in Family Physicians?

- Too many bureaucratic tasks: 5.3
- Spending too many hours at work: 4.7
- Feeling like just a cog in a wheel: 4.6
- Increasing computerization of practice (EHRs): 4.5
- Income not high enough: 4.1
- Maintenance of certification requirements: 4.0
- Too many difficult patients: 4.0
- Insurance issues: 4.0
- Lack of professional fulfillment: 3.9
- Too many patient appointments in a day: 3.9
- Threat of malpractice: 3.9
- Inability to provide patients with the quality care that they need: 3.7
- The impact of the Affordable Care Act: 3.7
- Difficult employer, colleagues, or staff: 3.7
- Compassion fatigue (overexposure to death, violence, and/or other loss in patients): 3.5
- Inability to keep up with current research and recommendations: 3.1
- Family stress: 3.1
CPOE

- LeapFrog identify Drug-drug, drug-allergy, drug-diagnosis, and drug-dose alerts to reduce med errors
- Drug alerts over ridden 49-96 %
- Few studies describe strategies to optimize & improve
- Aim was to quantify drug alerts and identify strategies to implement
Drug-Dose Checking

- Up to 60% of prescribing errors are dosing errors
- Dosing errors represent the most common type of preventable preventable adverse drug events
- 5-8% of all orders have dosing errors (~1/3 may be clinically significant)

Where do dose warnings come from?

- Medication Database Vendors
- Medi-span ® or First DataBank ®
9 Types of Drug-Dose Checking

- Below minimum daily dose
- Below minimum frequency dose
- Below minimum duration dose
- Below minimum single dose
- Exceeds maximum duration dose
- Exceeds maximum frequency dose
- Exceeds maximum daily dose
- Exceeds maximum single dose
- Exceeds daily prn dose

~90% of Epic customers have drug-dose checking turned on
1. Describe the opportunities and challenges of commercial, drug alerts.

2. Describe a strategic approach to effectively implementing drug-dose checking.

3. List specific ways to optimize drug-dose checking.
Team

- Family Medicine (CMIO), Internal Medicine – Pediatrics (CMIO), Internal Medicine (Informatics)
- Informatics Pharmacist
- Evaluated all strategies
Drug-Dose Checking Strategy

- Drug-dose CDS should improve patient safety.
- Drug-dose CDS need optimization to be effective.
- Optimized drug-dose CDS should enhance sensitivity and specificity, reduce false positive alerts
- Reducing clinical low risk alerts and more effect alert
Dose Warning Analysis

- Report from EHR
- Looked at three months of data
- Save in Excel, narrow down to warnings you plan to un-filter
- Use pivot tables to target most frequent warnings for deeper analysis
1. Describe the opportunities and challenges of commercial, drug alerts.

2. Describe a strategic approach to effectively implementing drug-dose checking.

3. List specific ways to optimize drug-dose checking.
Methods - Strategies

- Turned off incomplete information drug-dose alerts.
- Turned off minimum drug-dose alerts.
- Increased single drug-dose threshold to 125%.
- Increased daily drug-dose threshold to 125%.
- Increased dose frequency drug-dose threshold by 2 doses per day.
- Changed drug specific maximum single and daily drug-dose alert parameters on top 1% of alerting drugs.
Methods - Overview

- Default drug-dose alerts from Epic electronic health record using default Medi-Span® drug data.

- 1st quarter 2013 silent alerts for all drug-dose alerts (single dose, daily dose, dose frequency, and dose duration alerts), in different care settings and patient ages.

- System-wide and drug specific strategies analyzed to optimize drug-dose alerts.

834,911 orders and 104,098 alerts
Results: Drug-dosing alerts by category, care setting

<table>
<thead>
<tr>
<th>Alert type</th>
<th>Baseline Drug-Dose alerts, % (n)</th>
<th>ED, % (n)</th>
<th>IP, % (n)</th>
<th>OP, % (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below minimum daily dose</td>
<td>24% (24,508)</td>
<td>12% (1684)</td>
<td>24% (12,922)</td>
<td>40% (9,902)</td>
</tr>
<tr>
<td>Below minimum frequency</td>
<td>10% (10,330)</td>
<td>7% (718)</td>
<td>50% (5,163)</td>
<td>43% (4,449)</td>
</tr>
<tr>
<td>Exceeded maximum duration</td>
<td>5% (4,972)</td>
<td>5% (245)</td>
<td>16% (816)</td>
<td>79% (3911)</td>
</tr>
<tr>
<td>Exceeded maximum frequency</td>
<td>16% (16,566)</td>
<td>17% (2,840)</td>
<td>55% (9,143)</td>
<td>28% (4,583)</td>
</tr>
<tr>
<td>Exceeded maximum daily dose</td>
<td>23% (24,183)</td>
<td>15% (3,662)</td>
<td>59% (14,177)</td>
<td>26% (6,344)</td>
</tr>
<tr>
<td>Exceeded maximum single dose</td>
<td>23% (23,539)</td>
<td>20% (4,594)</td>
<td>54% (12,760)</td>
<td>26% (6,171)</td>
</tr>
<tr>
<td>Total</td>
<td>100% (104,098)</td>
<td>13% (13,743)</td>
<td>53% (54,981)</td>
<td>34% (35,371)</td>
</tr>
</tbody>
</table>
Results: Impact of system level settings

<table>
<thead>
<tr>
<th>System Level Drug-Dose Alerts</th>
<th>Optimization of drug-dose alerts, % (n)</th>
<th>Optimized drug-dose alerts per hundred orders</th>
<th>Decrease in drug-dose alerting, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum drug-dose daily dose alerts (removed)</td>
<td>0% (0)</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Minimum drug-dose frequency alerts (removed)</td>
<td>0% (0)</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Maximum drug-dose duration alerts (removed)</td>
<td>0% (0)</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Maximum drug-dose single dose alerts (increased to 125% of threshold)</td>
<td>42% (19,503)</td>
<td>2.3</td>
<td>17%</td>
</tr>
<tr>
<td>Maximum drug-dose daily dose alerts (increased to 125% of threshold)</td>
<td>44% (21,052)</td>
<td>2.5</td>
<td>13%</td>
</tr>
<tr>
<td>Maximum drug-dose dose frequency alerts (increased to more than 2 dose/day of threshold)</td>
<td>14% (6,433)</td>
<td>0.8</td>
<td>61%</td>
</tr>
<tr>
<td>Sub-Total System Level Drug-Dose Alerts</td>
<td>100% (46,988)</td>
<td>5.6</td>
<td>45%</td>
</tr>
</tbody>
</table>
Results: Impact of “top” Drug Specific Settings

<table>
<thead>
<tr>
<th>Drug-Dose Alert Category</th>
<th>Optimization of drug-dose alerts, % (n)</th>
<th>Optimized drug-dose alerts per hundred orders</th>
<th>Decrease in drug-dose alerting, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Level Drug-Dose Alerts</td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>Maximum drug-dose single dose alerts (top 22 individual dose adjustment customized)</td>
<td>0% (0)</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Maximum drug-dose daily dose alerts (top 22 individual dose adjustment customized)</td>
<td>0% (0)</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Sub-Total Individual Drug-Dose Alerts</td>
<td>0% (0)</td>
<td>0</td>
<td>100%¹</td>
</tr>
<tr>
<td>Total</td>
<td>25,455</td>
<td>0.030</td>
<td>76%</td>
</tr>
</tbody>
</table>

1. Approximate
Discussion

- Commercial, Out of the box drug-dosing CDS produces high (~12%) alerting rates.

- Primary, system approaches decreased drug-dose alerting to 5% (46,988/834,911) of orders.

- Secondary, drug-specific approaches decreased drug-dose alerting to 3% (25,455/834,911).

- Simple approaches significantly decrease drug-dose alerts, while maintaining drug-dose alerts for potentially clinically significant drug-overdoses.
Lessons Learned

- Do not turn on “out of the box” drug-dose checking
- Conduct “silent” drug-dose checking analysis
- Develop system level setting strategy
- Develop sustainable individual drug strategy

Implement drug-dose checking to help our patient (and in the way not to drive prescribers or pharmacists crazy)!
Questions